

Global Health Security Briefing Series:
Introduction to Global Health Security

Executive Summary

Global health security is the collective ability to mitigate health threats that have the potential to destabilize societies, states and regions. While traditionally focused on infectious disease outbreaks, global health security concerns any health crisis that threatens to overwhelm health systems. The opioid and fentanyl crisis, diseases caused by environmental contamination and biosynthetic products, and biologic and chemical weapons can all threaten global health security. **As such, global health security is a cornerstone of homeland and national security.**

The U.S. government, through a network of domestic health and security agencies as well as bi- and multilateral partnerships, invests in global health security for three primary reasons:

- To reduce the risk that health threats pose to Americans and our partners around the world.
- To prevent destabilization of societies and economies from health crises like pandemics.
- To improve the standing of the United States in the world, enhance soft power, improve economic opportunity and foster strong partnerships with U.S. allies

Since the end of World War II, the U.S. government has evolved a layered set of strategies—and capabilities to implement them—to advance these interests.

- The **foundational strategy** focuses on strengthening health systems in other countries, enabling them to detect and contain emerging health threats.
- The **second layer** consists of disease-specific prevention and treatment programs. These are typically divided into two categories: infectious diseases and non-communicable diseases (NCDs).
- A **third, cross-cutting layer** includes initiatives that address the health risks and opportunities posed by new technologies including synthetic biology, biotechnology, and artificial intelligence.

Global Health Security Briefing Series:
Introduction to Global Health Security

Although U.S. global health security strategies have evolved over the past eighty years—expanding and contracting through various waves of reform—the Trump administration’s cuts, reorganizations, and layoffs in key agencies stand out for their suddenness, scale, and breadth, impacting nearly every part of the federal government’s approach to global health security.

This brief, the first in the *Global Health Security Policy Brief Series*, aims to help policymakers, legislators, and US agency leads assess the state of the USG’s global health security **strategies and capabilities** in a rapidly changing policy environment and make informed choices with respect to the future of USG global health security programs.

This brief is divided into three sections:

1. **Introduction** – Provides an overview of the global health security landscape, outlines the U.S. Government’s (USG) primary interests in this area, and describes the key strategies and corresponding capabilities the USG has developed to support its efforts.
2. **How the USG Participates in Global Health Security** – Offers a high-level summary of the USG agencies and programs involved in implementing and executing these capabilities.
3. **Questions**– Presents discussion prompts intended for individuals overseeing US global health security efforts, including (but not limited to) relevant policymakers, legislators (members of relevant defense, foreign affairs, and health committees), and US agency leads.

Global Health Security Briefing Series:
Introduction to Global Health Security

Introduction: Global Health Security is Homeland Security

Global health security is the collective ability to mitigate health threats that have the potential to destabilize societies, states and regions. While traditionally focused on infectious disease outbreaks, global health security concerns any health crisis that threatens to overwhelm health systems. The opioid and fentanyl crisis, diseases caused by environmental contamination and biosynthetic products, and biologic and chemical weapons can all threaten global health security. **As such, global health security is a cornerstone of homeland and national security.**

The U.S. government, through a network of domestic health and security agencies as well as bi- and multilateral partnerships, invests in global health security for three primary reasons:

- To reduce the risk that health threats pose to Americans and our partners around the world.
- To prevent destabilization of societies and economies from health crises like pandemics.
- To improve the standing of the United States in the world, enhance soft power, improve economic opportunity and foster strong partnerships with U.S. allies.

Since the end of World War II, the U.S. government has developed a layered set of strategies—and capabilities to implement them—to advance these interests.

- The **foundational strategy** focuses on strengthening health systems in other countries, enabling them to detect and contain emerging health threats.
- The **second layer** consists of disease-specific prevention and treatment programs. These are typically divided into two categories: infectious diseases and non-communicable diseases (NCDs).
- A **third, cross-cutting layer** includes initiatives that address the health risks and opportunities posed by new technologies including synthetic biology, biotechnology, and artificial intelligence.

Global Health Security Briefing Series:
Introduction to Global Health Security

The complex and interrelated nature of the programs and agencies the U.S. government employs to advance this layered strategy makes it difficult to draw straight lines between a single policy change or program cut and a specific outcome. **Therefore, this brief focuses on the core capabilities the U.S. government needs to execute the strategy and effectively promote global health security—offering benchmarks against which policy changes can be assessed with respect to these broader strategic goals.**

Namely, to promote global health security the U.S. should have the capability to:

1. Improve, or at least maintain, **the global health gains made over the last century.** These gains have underpinned peace, stability, and economic prosperity for billions of people, including Americans.
2. Prevent, detect and respond **to emerging infectious disease threats**, at home and abroad, which could create a health crisis for Americans and overwhelm U.S. health systems.
3. Prevent, detect and respond to **non-infectious threats**—environmental, chemical, nuclear, manmade and natural—at home and abroad which could create a health crisis for Americans and overwhelm U.S. health systems.
4. Shape international regulatory frameworks and agreements that **govern new technologies, biosynthetic products, health-related artificial intelligence, and medical countermeasures** such that their benefits are maximized and their potential harms mitigated.

Achievements & Ongoing Efforts in Global Health Security

Global health security, as the name indicates, is a global effort that depends upon both the actions of individual nation states and the coordinated efforts of groups of states, often orchestrated by global institutions and agencies. The United States has played a central role in this broad global health security enterprise that has achieved remarkable progress over the past 80 years, including:

- Eradicating smallpox and nearly eradicating polio ^{1 2}
- Sharply reducing global infant death rates from 25% to less than 3% of infants dying before their first birthday. ³

Global Health Security Briefing Series:
Introduction to Global Health Security

- Nearly halving the number of women who die in childbirth.⁴
- Reducing the occurrence of major infectious disease killers of humanity including HIV/AIDS, TB, and malaria.⁵
- Understanding and markedly reducing mortality from the most prevalent non-infectious diseases, contributing to an almost doubling of worldwide life-expectancy.⁶
- Responding to pandemics including ending the Ebola and SARS pandemic, containing the MERS, Zika, and MPox outbreaks, and mitigating the COVID-19 pandemic^{7 8 9 10 11}
- Leading investment in global health research and development, through public and private collaborations, to develop new vaccines and treatments, including through Project Warp Speed¹²
- Nearly eliminating all stockpiles of chemical weapons and preventing the development of biological weapons, by negotiating and enforcing the Chemical and Biological Weapons Conventions, respectively.¹³
- Sharply reducing deaths from natural disasters through better prediction and preparedness.¹⁴

Current Challenges in Global Health Security Enterprise

Key challenges currently at the forefront of global health security efforts include:

I. Threats to Health Systems that support and maintain global health gains of the last century

Advancing global health security depends on strong and resilient health systems that can survey and anticipate threats and contain local and regional health crises before they cross borders or cause significant societal disruption. However, many countries still have weak and underdeveloped systems, especially after the COVID-19 pandemic, which strained health financing, workforce capacity, and resources.¹⁵ Strengthening and building resilience in these systems is a key focus of global health security efforts.

II. Infectious disease risks

Infectious disease risks continue to grow. There are three sources of concern:

A. Ongoing infectious disease threats: these include HIV, TB, malaria, polio, and measles, which continue to spark outbreaks and cause millions of preventable deaths globally.¹⁶ Current efforts aim both to reduce incidence of these diseases and to prevent emergence of treatment resistant strains.

Further, resurgent pathogens can be **easily imported** into the United States. Changing environmental patterns, for example, are already resulting in increased spread of “tropical” diseases, such as dengue and malaria, in the United States, particularly in the American south.¹⁷

B. Pandemics: As demonstrated by the COVID-19 crisis, pandemics can cause enormous societal disruption and loss of life and livelihoods. While anxiety persists about pandemics caused by emerging pathogens, the greatest level of concern is reserved for a global influenza pandemic that could infect and kill hundreds of millions of people in a short time span. One estimate assessed the risk of a pandemic equivalent to or more lethal than the COVID-19 crisis to be 50% over the next 25 years.¹⁸

C. Antimicrobial Resistance (AMR): Aberrant use of antimicrobials and antivirals both in the U.S. and around the world is resulting in the development of resistance to existing therapies used to treat infectious diseases, especially in the context of post-surgical, cancer, and even battlefield care.¹⁹ More than 3 million Americans have AMR infections annually, costing an estimated \$20 billion to treat, and \$35 billion in reduced productivity.²⁰

III. Health crisis stemming from emerging non-communicable diseases

Health crises—events that exceed the capacity of health systems to respond—can result from a range of other threats. These include extreme weather and heat events, environmental pollution, armed conflict, natural and humanmade disasters, and even rapid increases in mental illness, addiction, and other chronic diseases. Investing in tools that provide situational awareness of emerging health threats—such as public health surveillance systems, natural disaster and weather prediction and demographic

Global Health Security Briefing Series:
Introduction to Global Health Security

health surveys—is essential to help health leaders and policymakers anticipate and respond to future challenges. Strengthening these capabilities worldwide is a central priority of current global health security efforts.¹⁴

IV. Risks Associated with New Technologies

Rapid development of new technologies—from advances in biotechnology, synthetic biology, and artificial intelligence—present both grave risks and significant opportunities to promote human health. In particular, advances in biosynthetic technologies enable the modification and even creation of entirely new organisms with novel functions. These organisms may have many beneficial uses like improving the delivery of medications and vaccines, changing the way agricultural products are grown, and producing and recycling new products like biofuels and advanced materials. However, they also could potentially damage the environment and human health in unanticipated ways. Global health security aims to maximize the benefits of these innovations while understanding and mitigating the potential risks they pose.

How the USG has traditionally participated in Global Health Security

Over the past five decades, U.S. investment and engagement in global health security has evolved, with numerous agencies contributing through diverse programs and initiatives. Key involved agencies and offices included those within the Department of Health and Human Services (HHS) and the Department of State (DoS), with the National Security Council and Departments of Homeland Security, Defense (DoD), Agriculture (USDA), Environmental Protection Agency (EPA) playing important but more limited roles.

Global Health Security Briefing Series:
Introduction to Global Health Security

Within HHS, these have traditionally included:

- The Centers for Disease Control and Prevention (CDC)**--provided frontline disease surveillance, outbreak response, and capacity building to help countries detect and respond to emerging threats.
- The Administration for Strategic Preparedness and Response (ASPR)** led the federal public health and medical preparedness and response to emergencies, coordinating efforts to strengthen healthcare infrastructure and supply chains.
- BARDA (Biomedical Advanced Research and Development Authority)**, under ASPR, developed and procured medical countermeasures like vaccines, diagnostics, and therapeutics for public health emergencies.
- The National Institutes of Health (NIH)** drove biomedical research globally, including infectious disease research and vaccine development.
- The Food and Drug Administration (FDA)** ensured the safety and efficacy of medical products, including those used in international emergency responses.
- The Office of Global Affairs (OGA)** served as the primary liaison to multilateral organizations, Ministries of Health worldwide, and represented the U.S. in various global health forums, including at the World Health Organization.

Key DoS agencies involved in global health security efforts included:

- **USAID** focused on strengthening health systems, supporting disease surveillance, famine prevention and food security, and improving access to emergency services and healthcare in low-resource settings.
- **The Bureau of Health Security and Diplomacy**: created under the Biden Administration, the BHSD coordinated and elevated global health as a critical component of U.S. foreign policy and ran the **President's Emergency Plan for AIDS Relief (PEPFAR) program**.

Below is an overview of how these different agencies and offices participated in the layered global health security strategy described in the previous section.

Supporting health system strengthening and resilience

The US government has supported health systems in many ways, including directly supporting health workforce development, medical supply chain management, and

Global Health Security Briefing Series:
Introduction to Global Health Security

health and demographic surveillance system development. USAID, the CDC, and NIH were the main agencies involved in this effort. Of note, one critical effort spearheaded by USAID was support of countries' Demographic Health Surveys. DHS data allowed state leaders as well as international program developers and researchers to determine when and how health systems and health programs were effective. Without this data, countries and foreign aid donors may struggle to assess the needs and impacts of their work and detect emerging health threats.

Additionally, the US played an indirect role in health system strengthening through its giving to international lending institutions like the World Bank, which loan billions to low- and middle-income countries for health system and sector strengthening programs. These lending agencies do more than offer financial support: they set the norms and standards for health system governance, work to combat public sector corruption, and heavily influence the socio-economic policies of loan recipients.

Averting Infectious Disease Threats

I. Ongoing infectious disease threats: The U.S. has historically addressed ongoing infectious diseases abroad—especially those posing a potential threat to Americans—through two main approaches.

First, it implemented **bilateral programs** led by key agencies such as DoS, USAID, and the CDC. The largest of these was **PEPFAR**, which operated under the DoS and received an average of \$5 billion annually.²¹ Other programs, including the **President's Malaria Initiative**, as well as initiatives targeting **TB, maternal and child mortality**, and **nutrition**, were primarily managed by USAID. The **CDC's Global Health Center** collaborated with PEPFAR and USAID on these efforts and broader global health security initiatives.

Second, the U.S. has supported **multilateral organizations** that promote global health security. These include the **Global Fund to Fight AIDS, Tuberculosis and Malaria, Gavi, the Vaccine Alliance** and **UNICEF**, among others. These organizations help countries develop and implement strategic health plans in collaboration with local partners. Together, these grant-making entities support

Global Health Security Briefing Series:
Introduction to Global Health Security

care for/prevention of specific diseases and investments in health systems. These include laboratory capacity, field epidemiology training, and health information systems that are a bedrock upon which other disease surveillance systems depend.

II. Pandemics: four key agencies have been directly responsible for domestic pandemic preparedness: HHS's ASPR and CDC, DoD, and DoS. These agencies were responsible for **around \$1.2 billion in pandemic preparedness and biosecurity funding.**²³ These agencies partnered with others, including the USDA, NIH, FDA, and Department of Homeland Security to implement a coordinated global health security plan that included preventing, detecting and responding to outbreaks domestically. This involved maintaining the Strategic National Stockpile and investing in research and development of medical countermeasures (i.e. vaccine and medicines). These efforts were aligned with pandemic preparedness and biodefense plans, also overseen by these agencies.

The NIH's role in medical countermeasure research and development is unique globally. For decades, U.S. government investment in NIH and the private sector, has helped give the United States the most productive biomedical development enterprise in the world. Most newly marketed drugs can be traced to a grant provided by NIH, often at the earliest stages of research to understand basic biological mechanisms. In the case of diseases with epidemic potential, NIH has often funded product development into the early clinical stages. Because the market risk is especially high for products to counter emergent diseases, the private sector often won't invest in this work by itself. But because of this enabling public funding through the research and development ecosystem, American companies have been able to pioneer vaccines, treatments and diagnostics for COVID-19, HIV, Zika, Dengue, and Mpox, and Ebola, among others. By funding so much basic biomedical research, these investments have helped the United States lead biomedical product development across the spectrum of health concerns, including NCDs, which brings benefits to the health of Americans every day.

For its part, the CDC runs multiple key domestic infectious disease surveillance programs, including the National Notifiable Disease Surveillance Program

Global Health Security Briefing Series:
Introduction to Global Health Security

(NNDSP), the National Syndromic Surveillance Program (NSSP), and the Influenza-Like Illness Network (ILI-Net). These track incidence of infectious (and some noninfectious) conditions using data collected and collated from laboratories, emergency and urgent care departments, and outpatient clinics. All of these contribute to the core capability of the USG to detect and respond to infectious diseases that pose a threat to Americans. Local and state public health departments and laboratories generate and report much of the data that flows into these CDC-run systems. The CDC has historically offered funding, technical support, and guidance to state and local entities to support their contributions to these systems and to respond to emerging threats in accordance with CDC guidance.

Globally, the U.S. has helped lead initiatives and contributed financing for the World Health Organization. Historically, the US has been the largest single funder of the WHO, with contributions ranging from between \$400 and \$800 million a year over the last decade. The WHO possesses a **singular convening power to bring countries together to align on health emergency responses**. It coordinates global disease surveillance and sample collection, data sharing, and adoption of scientific standards for biologic research and medical countermeasure development. Also, it runs the Global Influenza Surveillance and Response System (GISRS)--the key surveillance tool to monitor and issue early warnings for flu pandemics.

The US has also supported an array of multilateral efforts like the Center for Epidemic Preparedness Innovations (CEPI) that invests in and accelerates the production of new medical countermeasures for infectious disease threats, as well as critical global disease surveillance programs like the Global Measles and Rubella Laboratory Network (GMRLN).

III. Antimicrobial resistance: CDC has led U.S. efforts to address the growing problem of antimicrobial resistance—the ability of pathogens to survive treatments and medications that used to kill them. The CDC has worked in partnership with USDA to propose and implement policies that improve agricultural and medical practices that promote more judicious use of antimicrobials. In addition, the CDC has run surveillance programs around the world monitoring AMR patterns in different contexts, including on the battlefield in Ukraine. USAID funded the CDC to run the

Global Health Security Briefing Series:
Introduction to Global Health Security

Field Epidemiology Training Program (FETP) to train disease detectives and field epidemiologists around the world in outbreak investigation. In 2024, Congress approved \$565 million to NIH to support research to respond to AMR.²³

Taken together, these efforts enhanced US ability to prevent, detect and characterize infectious disease threats, produce medical countermeasures, and execute a coordinated response to address infectious diseases that directly or indirectly threaten Americans. A successful global health security system means that Americans do not experience major health threats and emerging health crises are quickly contained.

Prevents, detects, responds to emerging non-communicable disease health crises

Like infectious diseases, NCDs can also overwhelm health systems and spark or worsen economic, social, and security crises. Broadly, the core strategy for mitigating NCDs is to strengthen the general capabilities of health systems to recognize and adapt to evolving patient needs, so no single disease condition becomes too overwhelming a burden on care institutions. Special categories of NCD threats and USG efforts to address them include:

- I. Addressing the biggest NCD threats:** In the U.S federal public health system, states take the lead in addressing emerging noninfectious disease crises, with the CDC facilitating support, education and information-sharing across U.S. states. Like infectious disease surveillance, the CDC manages a suite of nation-wide surveillance networks to track different non-infectious disease conditions.

The WHO, together with its regional organizations, manages a wide array of global chronic and non-infectious disease surveillance systems, to which member states voluntarily contribute national statistics. To increase the capabilities of health systems to manage common NCDs—from training health care workers, managing medical supply chains, and improved operational infrastructure—the WHO has adopted the Package of Essential Non-Communicable Disease Services Plus framework. (PEN-Plus) PEN-Plus aligns donor efforts and support. The US,

Global Health Security Briefing Series:
Introduction to Global Health Security

through USAID, has provided technical support in accordance with the PEN-Plus framework. It also has funded low-income countries to improve their internal demographic health reporting so they can contribute more accurate data to the WHO and can also understand and work to mitigate the burdens of disease suffered by their own populations. Overall, the value of having good global health data lies in understanding overall human population health issues, sharing lessons learned about how to address difficult human health problems, and ensuring focus and efforts to support human health are well targeted and efficient.

Furthermore, the WHO plays a critical role in promoting the quality, safety and efficacy of pharmaceutical products, like insulin, around the world generally—for both infectious and non-infectious disease conditions. Many countries rely on WHO norms and standards in authorizing new medicines and regulating medical products sold in their markets.

II. Addictive Substances: Illnesses related to addictive substances represent a significant category of NCDs addressed by various U.S. federal, state, and local public health and medical care entities. In addition to these domestic efforts, international initiatives also play an important role and warrant mention here.

The UN oversees international agreements on the regulation and control of addictive substances and drugs. WHO plays an important role in classifying addictive substances that have medicinal benefits, like narcotics. It also leads negotiations across countries regarding how health systems will collectively address different classifications of addictive substances and formulates normative model regulatory policies countries may choose to adopt.

III. Environmental contamination and disasters: Environmental disasters and contamination are threats to human health. However, in the U.S. to date there has been limited progress on measuring and reporting death and disability from environmental events like storms, fires, and heat. Multiple agencies like the National Oceanic and Atmospheric Administration (NOAA) and the Federal Emergency Management Administration (FEMA), work to predict and respond to

Global Health Security Briefing Series:
Introduction to Global Health Security

disasters, respectively. The CDC has worked with the National Academy of Sciences, Engineering, and Medicine to come up with ways to more accurately surveille health consequences of environmental phenomena.

Globally, the US has traditionally responded to disasters abroad through bilateral aid through USAID programs. It has also financially supported UN and UN affiliated agencies like UNICEF and WHO, whose work involves preventing, detecting and responding to environmental threats.

IV. Chemical, Biologic, Radiation & Nuclear Weapons & Threats: Both HHS and DoD lead chemical, biologic, radiation, and nuclear weapons & threats (CBRN) programs. HHS has traditionally focused on biologic, infectious disease threats as described above. At DoD, the Chemical and Biological Threats Program under the Office of the Assistant Secretary of Defense for Nuclear Deterrent and Chemical Biologic Defense (ASD-(ND-CBD)) invests in research, development, and testing of medical countermeasures and new approaches to detecting and countering emerging threats, with a specific mandate to protect US military personnel. DoD's Defense Threat Reduction Agency (DTRA) has a broader mandate of deterring and countering weapons of mass destruction in general, working with international partners to prevent and contain biosecurity threats, and engaging with the private sector to develop and deliver medicines and technologies relevant to CBRN security. Of note, during the COVID-19 crisis, HHS leveraged DTRA contractual authorities that allowed easier and more fruitful contracting with the private sector than that afforded HHS.

V. Famines and hunger: The United States has traditionally pursued a two-pronged strategy to address global hunger: providing emergency food aid and supporting market-oriented agricultural development. These efforts have been primarily carried out through two programs administered by USAID, often in collaboration with the USDA: *Food for Peace*, which focused on emergency relief, and *Feed the Future*, which promoted agricultural and food system development.

To implement these initiatives, USAID partners with international organizations such as the Food and Agriculture Organization (FAO) and the World Food Program

Global Health Security Briefing Series:
Introduction to Global Health Security

(WFP). However, U.S. food security policy has long been the subject of debate—particularly regarding the goals and outcomes of its agricultural development programs.

At the heart of this debate is a key question: do these programs primarily benefit U.S. non-profits and agricultural producers or the intended recipients? While there is broad agreement on the importance of a global emergency food relief system—especially in response to famines—critics argue that encouraging small-scale farmers to grow a single cash crop for export can increase their vulnerability to market shocks and reduce their own food security. Additionally, the influx of cheap, U.S.-grown commodities into local markets can foster dependency and undermine the development of resilient local food and agricultural systems.

Governing Advances in Health Relevant technologies & Synthetic Biology

The White House's Office of Science and Technology Policy oversees the Coordinated Framework for Regulation of Biotechnology. This framework specifies the roles and responsibilities of the following: USDA's Animal and Plant Health Inspection Service (APHIS), FDA, EPA, the CDC, NIH, and the National Science Foundation.

Taken together, these agencies have been responsible for overseeing and enforcing regulations on newly biologic products and technologies products, with the goals of protecting the environment, ensuring consumer safety, and strengthening biosecurity. However, as the underlying science and technology evolve rapidly, questions have been raised about the adequacy and enforceability of existing regulatory frameworks. There is growing concern that these frameworks may require regular updates to remain effective and comprehensive. Moreover, the regulatory frameworks that govern the biosynthesis space sometimes overlap or conflict with directives regarding research on dangerous pathogens.

Global Health Security Briefing Series:
Introduction to Global Health Security

Questions for Policymakers

The following questions are primarily designed for policymakers conducting oversight of the agencies involved in the global health security efforts, including (but not limited to) appropriators and members of the relevant defense, foreign relations, and health committees.

These questions are intended to help policymakers, legislators, and US agency leads assess the status of the USG's global health security capabilities pursuant to the policy changes promulgated in 2025 and evaluate how changes in these capabilities impact the USG's global health security strategies writ large.

Capability 1: Maintain or improve the global health gains made over the last century which have contributed to peace, stability, and economic prosperity for billions of people, including Americans.

- a. The U.S. has indicated it will reduce contributions to international lending institutions like the World Bank that significantly finance health systems around the world. Does this create an opening for China-backed lending institutions to dominate in the economic and health development of many regions around the world? How does this threaten US Security? How will this be addressed and/or mitigated?
- b. The U.S. withdrawal from WHO and from its role in multiple international organizations could create an opportunity for other countries like China to have more influence in critical policy domains including global pharmaceutical regulation, data sharing and privacy standards, monitoring and sharing of information about disease threats, and biosecurity practices and policies. How will this be addressed and/or mitigated?
- c. The CDC, often through WHO, has worked with allies around the world to support strengthening the public capacities to govern and regulate health systems. Will the CDC continue this work and how will it do so without the

Global Health Security Briefing Series:
Introduction to Global Health Security

partnership of the WHO and other partners like UNICEF? How will the impacts on health system capability be assessed if the CDC approach and role changes?

Capability 2: Preventing, Detecting and Responding to Infectious Disease Threats

1. Prevention

- a. Abruptly stopping treatment of dangerous pathogens like malaria, HIV, and TB can both allow for resurgence of these pathogens and fuel emergence of resistance to standard therapies. What processes are in place to estimate and mitigate the impact of recent changes to DoS and HHS global health security programs on disease spread and emergence of resistance?
- b. The COVID-19 pandemic raised concerns about the biosecurity of laboratories around the world. If the US withdraws from the WHO and other major global health security bodies, how will the US influence laboratory safety?
- c. The administration has indicated it wants other countries to assume responsibility for funding global health security programs like Gavi the Vaccine Alliance that distribute basic vaccines around the world to the most vulnerable populations of children. What efforts have been made on the part of this administration to ensure other countries will do so? What plans are in place if other countries fail to do so, and if these programs falter resulting in vaccine-preventable outbreaks of diseases like polio, measles and diphtheria?
- d. How do recent changes in partnerships with foreign governments affect the ability of the USDA to prepare for animal threats, such as bird flu?

2. Detection

- a. What formal assessments have been done regarding how recent changes to HHS, USAID, and DoS will impact global disease surveillance programs and systems (e.g. GRMLN, Global Influenza Network, and DHS) that alert us to emerging health crises around the world?

Global Health Security Briefing Series:
Introduction to Global Health Security

- b. What formal assessments have been done to determine the impact of interruptions and cancellations of global health programs on other States' willingness to share intelligence about emerging disease threats, including bioterrorist threats?
- c. How do the changes at the CDC and ASPR and the defunding of the White House office for pandemic preparedness, and other cuts impact our ability to detect biological weapon threats?
- d. Recent changes to International Health Regulations (2005) refine how countries can identify and respond to emerging pathogens. Given, planned US withdrawal from multilateral agencies and regulations, how will the US access this information and obtain genetic information about pathogens?
- e. The abrupt cancellation of longstanding global health and security programs has created a breach of trust in many countries whose poorest citizens rely on these programs for survival. The Trump administration has expressed an interest in creating an alternative to the WHO. How will it attract the interest of other countries to join such an effort when they may feel the U.S. has walked away from its international global health security commitments?
- f. How will local and state public health efforts to surveille communities for dangerous pathogens be affected by CDC funding cuts?

3. Response

- a. During the COVID-19 crisis, US states had to compete against each other to obtain personal protective equipment and key resources like ventilators because the strategic national stockpile didn't have enough. How will the new administration do better?

Global Health Security Briefing Series:
Introduction to Global Health Security

- b. Given that both the DoD and HHS are undergoing significant cuts and restructuring, how will the partnership between DTRA and BARDA around rapid research and development for medical countermeasures be maintained? Specifically, how will BARDA acquire the contractual authorities of DTRA in the event of a health crisis?
- c. How will cuts to global health security programs (i.e., surveillance) impact vaccine and therapeutic development programs at BARDA and NIH?
- d. How will local and state public health efforts to respond to outbreaks be affected by CDC funding cuts and reorganizations? How will outcomes of these changes be monitored?

Capability 3: Preventing, Detecting and Responding to non-Infectious Disease Threats

- a. How will the US influence global policies and regulations regarding addictive substances if it withdraws from the WHO?
- b. How will the US engage with the WHO around approvals of US-developed pharmaceuticals?
- c. Environmental threats: Will the US provide aid to countries that suffer a natural disaster in the wake of DoS restructuring? Will the type or level of aid change?
- d. How has the restructuring of HHS and DoS affected U.S. famine prevention and emergency food aid programs and how has this been assessed? Instead of the US providing emergency food aid directly, are there other strategies for preventing famines and providing emergency food aid under consideration? How might changing or ceding the US's leading role in hunger and famine prevention to other global actors impact US soft power and influence globally?

Global Health Security Briefing Series:
Introduction to Global Health Security

- e. A key debate about how the US provides routine food assistance is that it benefits US farmers and non-profits more than beneficiaries and may decrease their food security and increase their dependency on the US for food aid. Should the US continue to pay US farmers to produce agricultural products that may have these consequences? What should be the goal of US anti-hunger food security programs? How do you see US strategy evolving in this regard?

Capability 4: Shaping international regulatory frameworks and agreements with respect to new technologies and medical countermeasures such that their benefits are maximized and their potential harms mitigated.

- a. Which U.S. agencies should coordinate and spearhead global engagement (e.g., new or amended bio or chemical weapons treaties) related to biosynthetic products, used both offensively and defensively? How would different U.S. agencies—particularly HHS, DoS, and the DoD work together and how will they engage in the global efforts?
- b. The Office for Science and Technology Policy has traditionally overseen the U.S. Coordinated Framework for Regulation of Biotechnology. If the OSTP is downsized or dismantled, which agencies would be responsible for overseeing US biosynthetic policy and regulation? How would the U.S. maintain its global advantage in this space while working to establish global norms and rules to ensure product safety?

Global Health Security Briefing Series:
Introduction to Global Health Security

Acronyms

AMR - antimicrobial resistance
APHIS - Animal and Plant Health Inspection Services
ASD-(ND-CBD) - Assistant Secretary of Defense for Nuclear Deterrent and Chemical Biologic Defense
ASPR - Administration (formerly Assistant Secretary) for Strategic Preparedness and Response
BARDA - Biomedical Advanced Research and Development Agency
CBRN - Chemical, biologic, radiation, and nuclear weapons
CDC - Centers for Disease Control
CEPI - Center for Epidemic Preparedness Innovations
DoD – Department of Defense
DoS - Department of State
DHS – Department of Homeland Security
DHS – Demographic Health Survey
DTRA – Defense Threat Reduction Agency
EPA - Environmental Protection Agency
FAO – Food & Agriculture Organization
FDA – Food and Drug Administration
FEMA - Federal Emergency Management Administration
FETP - Field Epidemiology Training Program
GISRS - Global Influenza Surveillance and Response System
GRMLN - Global Rubella and Measles Laboratory Network
HHS - Health and Human Services
HIV/AIDS- Human Immunodeficiency Syndrome / Acquired Immune Deficiency Syndrome
ILI-Net - Influenza-Like Illness Network
MERS – Middle Eastern Respiratory Syndrome
Mpox – new name for Monkey Pox
NCD – Noncommunicable disease
NIH – National Institutes of Health

Global Health Security Briefing Series:
Introduction to Global Health Security

NOAA - National Oceanic and Atmospheric Administration
NNDSP - National Notifiable Disease Surveillance Program
NSSP - National Syndromic Surveillance Program
OFDA - Office of Disaster Assistance
OGA - Office of Global Affairs
OSTP – Office for Science & Technology Policy
PEN-Plus - Package of Essential Non-Communicable Disease Services Plus framework
PEPFAR - President's Emergency Plan for AIDS Relief
PMI - Presidents Malaria Initiative
R&D - Research and Development
TB - Tuberculosis
UNICEF - United Nations Children's Fund
U.S. – United States
USAID - U.S. Agency for International Development
USDA – United States Department of Agriculture
U.S.G. – United States Government
WFP – World Food Program
WHO - World Health Organization

Bibliography

1. The Triumph of Science: The Incredible Story of Smallpox Eradication - NFID.
<https://www.nfid.org/> <https://www.nfid.org/the-triumph-of-science-the-incredible-story-of-smallpox-eradication/>.
2. Lee, S. E. *et al.* Progress Toward Poliomyelitis Eradication — Worldwide, January 2021–March 2023. *Morb. Mortal. Wkly. Rep.* **72**, 517–522 (2023).
3. Child mortality and causes of death. <https://www.who.int/data/gho/data/themes/topics/topic-details/GHO/child-mortality-and-causes-of-death>.

Global Health Security Briefing Series:
Introduction to Global Health Security

4. Alkema, L. *et al.* Global, regional, and national levels and trends in maternal mortality between 1990 and 2015, with scenario-based projections to 2030: a systematic analysis by the UN Maternal Mortality Estimation Inter-Agency Group. *The Lancet* **387**, 462–474 (2016).
5. United Nations Millennium Development Goals.
<https://www.un.org/millenniumgoals/aids.shtml>.
6. World: life expectancy at birth 1950-2100. *Statista*
<https://www.statista.com/statistics/805060/life-expectancy-at-birth-worldwide/>.
7. Kuppalli, K. Ebola: Ten years later—Lessons learned and future pandemic preparedness. *PLOS Glob. Public Health* **4**, e0003662 (2024).
8. Threats, I. of M. (US) F. on M. *et al.* THE PUBLIC HEALTH RESPONSE TO SARS. in *Learning from SARS: Preparing for the Next Disease Outbreak: Workshop Summary* (National Academies Press (US), 2004).
9. Chang, C., Ortiz, K., Ansari, A. & Gershwin, M. E. The Zika outbreak of the 21st century. *J. Autoimmun.* **68**, 1–13 (2016).
10. Tiwari, R., Gulati, P. & Raghuvanshi, R. S. Mpox outbreak response: Regulatory and public health perspectives from India and the world. *J. Infect. Public Health* **18**, 102839 (2025).
11. COVID-19: Make it the Last Pandemic.

Global Health Security Briefing Series:
Introduction to Global Health Security

12. Office, U. S. G. A. Operation Warp Speed: Accelerated COVID-19 Vaccine Development Status and Efforts to Address Manufacturing Challenges | U.S. GAO. <https://www.gao.gov/products/gao-21-319> (2021).
13. Success of 25-Year-Old Chemical Weapons Prohibition Treaty Cannot Be Taken for Granted, Experts Caution | Arms Control Association. <https://www.armscontrol.org/pressroom/2022-04/chemical-weapons-convention-25-year-anniversary>.
14. Ritchie, H. The world has become more resilient to disasters, but investment is needed to save more lives. *Our World Data* (2024).
15. Haileamlak, A. The impact of COVID-19 on health and health systems. *Ethiop. J. Health Sci.* **31**, 1073–1074 (2021).
16. Shattock, A. J. *et al.* Contribution of vaccination to improved survival and health: modelling 50 years of the Expanded Programme on Immunization. *The Lancet* **403**, 2307–2316 (2024).
17. Malaria's Comeback in the U.S. | Johns Hopkins | Bloomberg School of Public Health. <https://publichealth.jhu.edu/2023/malaria-comeback-in-the-us> (2023).
18. Madhav, N. K. *et al.* Estimated Future Mortality from Pathogens of Epidemic and Pandemic Potential. (2023).
19. Petrosillo, N., Petersen, E. & Antoniak, S. Ukraine war and antimicrobial resistance. *Lancet Infect. Dis.* **23**, 653–654 (2023).

Global Health Security Briefing Series:
Introduction to Global Health Security

20. CDC. CDC Partners Estimate Healthcare Cost of Antimicrobial-resistant Infections.
Antimicrobial Resistance <https://www.cdc.gov/antimicrobial-resistance/stories/partner-estimates.html> (2025).
21. The Trump Administration's Foreign Aid Review: Status of PEPFAR. *KFF* <https://www.kff.org/global-health-policy/fact-sheet/the-trump-administrations-foreign-aid-review-status-of-pepfar/> (2025).
22. *Global Health Security USAID and CDC Funding, Activities, and Assessments of Countries' Capabilities to Address Infectious Disease Threats before COVID-19 Onset.* <https://www.gao.gov/assets/gao-21-359.pdf> (2021).
23. Jezek, A. & del Rio, C. Antibacterial Resistance, Research, and Funding in 2024. *Clin. Infect. Dis. Off. Publ. Infect. Dis. Soc. Am.* **77**, S277–S278 (2023).